Opportunities for synergy between experiments and BOUT++ modeling on Alcator C-Mod and DIII-D

E. M. Davis 1, M. Porkolab 1, J. W. Hughes 1, B. LaBombard 1, J. C. Rost 1, P. B. Snyder 2, and X. Q. Xu 3

¹MIT PSFC, ²GA, and ³LLNL

BOUT++ Workshop, Livermore, CA, Sept. 5, 2013

Work supported by USDoE awards DE-FC02-99-ER54512, DE-FG02-94-ER54235, DE-AC52-07NA27344, and NNSA SSGF

LLNL-PRES-639635

Outline

- The plasma edge sets boundary conditions on the core plasma and needs to be understood
- BOUT++ is a maturing code, able to simulate an increasingly broad range of physical regimes
- $\nu^* > 1$: Alcator C-Mod's EDA H-mode
 - Linear: stability analysis
 - Nonlinear: comparison to experimental measurements
- $\nu^* < 1$: DIII-D's ELM-free H-mode
 - BOUT++ gyro-Landau fluid code is desired to aid the interpretation of experimental measurements
- Conclusions and future work

The "Standard Model": Peeling-Ballooning (PB) modes constrain the pedestal in ELMy H-mode

- Peeling and ballooning modes *couple* at intermediate $5 \le n \le 25$ to drive ELMs
 - Ideal MHD instability
- Experimentally, ELMs are routinely observed when crossing the PB threshold
- Ideal MHD codes such as ELITE* can assess stability to PB modes

^{*} P. B. Snyder et al. Phys. Plasmas 9 2037 (2002).

C-Mod's EDA H-mode is a steady-state, high-performance regime regulated continuously by a QCM edge fluctuation

- The Enhanced D_{α} (EDA) H-mode* exhibits:
 - Excellent energy confinement
 - Reduced impurity confinement
- EDA is C-mod's "workhorse" H-mode
- ullet EDA pedestal regulated by a quasi-coherent mode (QCM) oscillation $\sim 100\,\mathrm{kHz}$
- $\nu^* > 1 \Rightarrow$ amenable to fluid analysis

^{*} M. Greenwald et al. Phys. Plasmas 6 1943 (1999).

ELITE shows that ideal PB modes are *stable* in EDA H-mode; other physics needed to explain the QCM

BOUT++ can solve a set of nonideal reduced MHD equations, including η effects important for $\nu^* > 1$

Reduced MHD Equations*

$$\begin{split} &\frac{\partial \omega}{\partial t} + \mathbf{V_E} \cdot \nabla \omega = B_0^2 \nabla_{||} \left(\frac{J_{||}}{B_0} \right) + 2 \hat{\mathbf{b}}_0 \times \boldsymbol{\kappa} \cdot \nabla \boldsymbol{p} \\ &\frac{\partial P}{\partial t} + \mathbf{V_E} \cdot \nabla P = 0 \\ &\frac{\partial A_{||}}{\partial t} = -\nabla_{||} (\phi + \boxed{\boldsymbol{\Phi}_0}) + \boxed{\frac{\eta}{\mu_0} \nabla_{\perp}^2 A_{||}} \end{split}$$

Non-ideal Physics

Include resistivity

After gyroviscous cancellation, the diamagnetic drift modifies the vorticity

Using force balance and assuming no net rotation, $E_{r0} = (1/n_i Z_i e) \nabla_{\perp} P_{i0}$

Definitions

$$\omega = \frac{n_0 m_i}{B_0} \left(\nabla_{\perp}^2 \phi + \boxed{\frac{1}{n_0 Z_i e} \nabla_{\perp}^2 p_i} \right), \qquad \mathbf{V_E} = \frac{1}{B_0} \mathbf{\hat{b}_0} \times \nabla (\phi + \boxed{\Phi_0})$$
$$J_{||} = J_{||0} - \frac{1}{\mu_0} \nabla_{\perp}^2 A_{||}, \qquad P = P_0 + p$$

^{*} B. D. Hazeltine and J. D. Meiss, *Plasma Confinement* (Dover, Mineola, NY, 2003).

∇P was self-consistently varied to assess EDA's linear stability with BOUT++

BOUT++ indicates PB modes are *stable* at experimental values of ∇P

BOUT++ marginal stability thresholds and growth rate trends for PB modes agree with ELITE

C-Mod's resistivity drives unstable modes at experimental values of ∇P that may be responsible for the QCM

Nonlinear simulations show a quasi-coherent oscillation qualitatively similar to EDA's QCM

Nonlinear simulations show a quasi-coherent oscillation qualitatively similar to EDA's QCM

The nonlinear quasi-coherent oscillation is peaked about $n \sim 16$, similar to C-Mod's EDA QCM

Nonlinear saturation occurs at $t\sim$ 40 μs , requiring \sim 400 $\tau_{\rm A}$

The nonlinearly computed mode spans the separatrix and sits in the edge E_r well, similar to previous modeling results

The nonlinearly computed mode spans the separatrix and sits in the edge E_r well, similar to previous modeling results

BOUT++ δp and $\delta \phi$ predictions:

BOUT++ δp and $\delta \phi$ predictions:

 $\frac{\text{Mirror Langmuir Probe}}{(\text{MLP}) \text{ Measurements}^*}:$

BOUT++ δp and $\delta \phi$ predictions:

Mirror Langmuir Probe (MLP) Measurements*:

⇒ Drift wave!

*B. LaBombard et al. TTF Workshop, Santa Rosa, CA (Apr. 9-12, 2013).

BOUT++ δp and $\delta \phi$ predictions:

Hall term in Ohm's law for drift wave-like response may help:

$$\frac{\partial A_{||}}{\partial t} = -\nabla_{||}\Phi - \eta J_{||} + \underbrace{\frac{1}{en}\nabla_{||}p_{e}}$$

or may need 2-fluid model

Mirror Langmuir Probe (MLP) Measurements*:

\Rightarrow Drift wave!

*B. LaBombard et al. TTF Workshop, Santa Rosa, CA (Apr. 9-12, 2013).

Gyro-Landau BOUT++ needed to interpret measurements in $u^* < 1$ regimes, e.g. DIII-D's ELM-free H-mode

- Phase Contrast Imaging (PCI) measures ∫ ñdl
- Detector: 16 channel linear array
- Large range in (f, k) space
 - 10 kHz < f < 10 MHz
 - $2 \text{ cm}^{-1} < k < 30 \text{ cm}^{-1}$

Gyro-Landau BOUT++ needed to interpret measurements in $u^* < 1$ regimes, e.g. DIII-D's ELM-free H-mode

- Phase Contrast Imaging (PCI) measures ∫ ñdl
- Detector: 16 channel linear array
- Large range in (f, k) space
 - 10 kHz < f < 10 MHz
 - $2 cm^{-1} < k < 30 cm^{-1}$

The S(f, k) measured by PCI in DIII-D's ELM-free H-mode has highly asymmetric features with well-defined $v_{\rm ph}$

The S(f, k) measured by PCI in DIII-D's ELM-free H-mode has highly asymmetric features with well-defined $v_{\rm ph}$

PCI's S(f, k) structures suggest regions of strong localized edge turbulence*, begging theoretical validation

Typical H-mode Er well

* J. C. Rost et al. in preparation (2013), and J. C. Rost et al. TTF Workshop, Santa Rosa, CA (Apr. 9-12, 2013).

Conclusions and Future Work

- BOUT++ ideal linear growth rates are in good agreement with those from ELITE
- \bullet Both C-Mod and DIII-D are capable of accessing $\nu^*>1$ and $\nu^*<1$ regimes
- $\nu^* > 1$ simulations in BOUT++
 - EDA H-mode is a steady-state, high performance operational regime in C-Mod not explained by PB theory
 - Inclusion of C-Mod's resistivity drives RBMs that may explain the QCM and the resulting particle flux
 - Disagreement with MLP measurements indicates the need to include drift wave physics
- $\nu^* < 1$ simulations in BOUT++
 - PCI measures asymmetric turbulent spectra in DIII-D's ELM-free H-modes
 - Modeling with the gyro-Landau extension to BOUT++ will complement empirical knowledge

C-Mod's mirror Langmuir probe measurements show QCM lives in region with *positive* radial electric field*

^{*}B. LaBombard et al. TTF Workshop, Santa Rosa, CA (Apr. 9-12, 2013).